38 research outputs found

    Optical OFDM based on the fractional Fourier transform for an indoor VLC system

    Get PDF
    The fractional Fourier transform (FRFT), which is a family of linear transformations generalizing the classical Fourier transform, has been used in the fields of filter design, signal processing, phase retrieval, and pattern recognition due to its unique properties. The FRFT of a signal can be interpreted as a decomposition of the signal in terms of chirps. In this paper, for the first time, to the best of our knowledge, we introduce an optical FRFT (OFRFT)based orthogonal frequency division multiplexing (OFDM) visible light communications (VLC) system and compare numerical results with a direct current-biased optical (DCO)-OFDM system. First, the optimal fractional order is calculated to improve the performance of the proposed system by minimizing the bit error rate (BER). The numerical results show that OFRFT-OFDM with the optimal fractional order offers a significantly improved BER performance compared with DCO-OFDM under the same computational complexity and spectral efficiency. In addition, the peak to average power ratio, which is an issue in light emitting diode-based VLC systems, is reduced by <1 dB using OFRFT-OFDM for the same BER compared with DCO-OFDM

    Flicker-free Multi-channel Transmitter Orientation in Camera based Optical Wireless Communications

    Get PDF
    We demonstrate the camera based optical wireless communications using flicker-free multi-channel transmitter orientation that provide 100 % success of reception over orientation angle of up to 30° at 200 and 400μs camera shutter speed

    A Machine Learning Based Signal Demodulator in NOMA-VLC

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising scheme to improve the spectral efficiency, user fairness, and overall throughput in visible light communication (VLC) systems. However, the error propagation (EP) problem together with linear and nonlinear distortions induced by multipath, limited modulation bandwidth and nonlinearity of light emitting diode significantly limit the transmission performance of NOMA-VLC systems. In addition, having accurate channel state information, which is important in the recovery of NOMA signal, in mobile wireless VLC systems is challenging. In this work, we propose a convolutional neural network (CNN) based demodulator for NOMA-VLC, in which signal compensation and recovery are jointly realized. Both simulation and experiment results show that, the proposed CNN based demodulator can effectively compensate for both the linear and nonlinear distortions, thus achieving improved bit error ratio (BER) performances compared with the successive interference cancellation (SIC) and joint detection based receivers. Compared to SIC, the performance gains are 1.9, 2.7 and 2.7 dB for User1 for power allocation ratios (PARs) of 0.16, 0.25 and 0.36, respectively, which are 4, 4 and 2.6 dB for User2 for PARs of 0.16, 0.25 and 0.36, respectively

    Dimming-Aware Interference Mitigation for NOMA-Based Multi-Cell VLC Networks

    Get PDF
    This letter proposes inter-cell interference mitigation in a dimming-aware way for multi-cell visible-light communication networks, through efficient time-scheduling, scaling, and coordination of non-orthogonal multiple access (NOMA) transmissions at the access points. By this method, users are grouped and served in different time slots depending on whether they are at the center or at the edge of the cell. This reduces the number of NOMA users per time slot, which decreases the network computational complexity, by reducing the average number of successive interference cancellation steps. Comparison of the proposed scheme with the classical NOMA over different dimming constraints shows an improvement of up to 39% and 37% in the average sum-rate and fairness, respectively, for a 30% duty cycle transmission in a 4-cell scenario with 8 users

    Joint Dimming Control and Optimal Power Allocation for THO-OFDM Visible Light Communications

    Get PDF
    Layered or hybrid optical orthogonal frequency division multiplexing (OFDM) has been proposed for use in optical communications due to its excellent spectral and power efficiencies, especially in visible light communications (VLC). However, most of the current works concentrate on transmitter and receiver design as well as the quality of service in communication networks. In this paper, we propose a spectrum-efficient dimmable triple-layer hybrid optical OFDM (DTH-OFDM) scheme to tackle the illumination requirements, considering different practical indoor VLC scenarios from low illumination to high illumination intensities. In the proposed DTH-OFDM scheme, the required dimming level is achieved by jointly adjusting the dimming factors and direct current bias. We investigate the comprehensive performance analysis of the proposed DTH-OFDM in detail, including probability density function, bit error rate (BER), spectral and energy efficiencies. In addition, a joint dimming control and optimal power allocation problem for DTH-OFDM is formulated and solved using convex optimization under the constraints of light emitting diode (LED) nonlinearity, dimming target and communications reliability. Numerical results show that, the proposed DTH-OFDM can offer continuous and arbitrary dimming target with higher spectral efficiency and lower BER compared with its counterparts, as well as an enhanced tolerance to the LED nonlinearity

    A Full-Duplex Optical Millimeter Waves (60-100 GHz) Radio-over-Fiber System

    Get PDF
    In this paper, we propose and simulate the most compact full-duplex optical millimeter wave radio-over-fiber (mmW-RoF) system employing binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) with error-free transmission over 10, 25 and 50 km of single mode fibers (SMF) in up-link (UL) and down-link (DL). We evaluate the EVM values for DL and UL are < 24% for BPSK and QPSK over the 10, 25 and 50 km of SMF

    A Comprehensive Modeling of Vehicle-To-Vehicle Based VLC System under Practical Considerations, an Investigation of Performance, and Diversity Property

    Get PDF
    In this work, a vehicle-to-vehicle (V2V) visible light communications (VLC) model for two practical scenarios, is proposed. In scenario 1, the random lateral shift of vehicles and the deterministic longitudinal separation between two communicating vehicles are considered, whereas in scenario 2, longitudinal separation between two vehicles is considered to be random, and lateral shift of vehicles is considered to be deterministic. To this end, we emphasize comprehensive modeling of the practical characteristics of the considered V2V-VLC system, such as random path loss due to the random mobility of the vehicle, random lateral shift and random longitudinal separation of the vehicle. Moreover, we analyze the performance of the proposed V2V-VLC model in terms of different metrics under the consideration of a novel channel model. Considering our findings, it is observed that the random lateral shift of the vehicle and the random longitudinal separation between two vehicles have a significant impact on the V2V-VLC system performance. Further, at a distance of 40 m, for example, the path loss penalties for moderate and dense fog weather scenarios are 2 and 3 dB, respectively, compared with the clear weather. Furthermore, the combined impact of path loss and atmospheric turbulence affects the V2V-VLC performance significantly

    Low-Complexity Receiver for HACO-OFDM in Optical Wireless Communications

    Get PDF
    In this letter, a low-complexity receiver (Rx) is proposed for hybrid asymmetrically clipped optical orthogonal frequency division multiplexing (HACO-OFDM). Owing to the special time-domain property of HACO-OFDM, overlaid asymmetrically clipped OFDM (ACO-OFDM) and pulse-amplitude-modulated discrete multitoned (PAM-DMT) signals can be distinguished in the time domain to reduce its computational complexity. Besides, the near-optimal optical power allocation is further applied to optimize the proposed system performance. Theoretical analysis and simulation results demonstrate that, the proposed Rx can achieve nearly the same bit error rate (BER) performance as the BER-optimal iterative Rx but with an effective complexity reduction, thus demonstrating its application potential in high-speed optical communication systems

    Spatial frequency-based angular behavior of a short-range flicker-free MIMO–OCC link

    Get PDF
    In this paper, we provide a solution based on spatial frequency fsf to study the angular behavior of a flicker-free, short-range indoor multiple–input multiple–output (MIMO) optical camera communications (OCC) link. We focus on the experimental investigation of OCC’s performance for the transmitters (Txs) [i.e., light-emitting diode (LED) based arrays] located at the same and different distances from the receiver (Rx) with the off-axis rotation angle θ. We have used two 8 × 8 distributed LED arrays and a commercial low-cost complementary metal-oxide-semiconductor (CMOS) Raspberry Pi camera with the rolling-shutter capturing mode as the Tx and Rx, respectively. The image and the respective communications link quality metrics are measured in terms of the peak signal-to-noise ratio (PSNR) and the rate of successfully received bits with respect to fsf for different camera shutter speeds (SS). A CMOS image sensor noise characterization is carried in terms of the signal-to-noise ratio (SNR) and PSNR. The proposed study provides a 100% success rate in data reception at the optimum θ of 50◦ at lower captured values of fsf, which is projected onto the image sensor in the form of pixels. Moreover, the effect of channel saturation over fsf is studied with respect to θ and SS and we show that, for θ exceeding the optimum value along transmission range, the fsf area of the Txs reduces to less than ∼50% of the captured Tx units at θ of 0◦, where no data can be fully recovered

    Indoor 3D NLOS VLP using a binocular camera and a single LED

    Get PDF
    In this paper, we propose a non-line of sight (NLOS) visible light positioning (VLP) system using a binocular camera and a single light emitting diode (LED) for the realization of 3D positioning of an arbitrary posture. The proposed system overcomes the challenges of the shadowing/blocking of the line of sight (LOS) transmission paths between transmitters and receivers (Rxs) and the need for a sufficient number of LEDs that can be captured within the limited field of view of the camera-based Rx. We have developed an experimental testbed to evaluate the performance of the proposed system with results showing that the lowest average error and the root mean square error (RMSE) are 26.10 and 31.02 cm following an error compensation algorithm. In addition, a label-based enhanced VLP scheme is proposed for the first time, which has a great improvement on the system performance with the average error and RMSE values of 7.31 and 7.74 cm and a 90 th percentile accuracies of < 11 cm
    corecore